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Hammerhead: fast, fully automated docking of flexible ligands to 
protein binding sites 
W illiam Welch, Jim Ruppert and Ajay N  Jain 

Background: Molecular docking seeks to predict the geometry and affinity of 
the binding of a small molecule to a given protein of known structure. Rigid 
docking has long been used to screen databases of small molecules, because 
docking techniques that account for ligand flexibility have either been too slow or 
have required significant human intervention. Here we describe a docking 
algorithm, Hammerhead, which is a fast, automated tool to screen for the binding 
of flexible molecules to protein binding sites. 

Results: We used Hammerhead to successfully dock a variety of positive 
control ligands into their cognate proteins. The empirically tuned scoring function 
of the algorithm predicted binding affinities within 1.3 log units of the known 
affinities for these ligands. Conformations and alignments close to those 
determined crystallographically received the highest scores. We screened 
80 000 compounds for binding to streptavidin, and biotin was predicted as the 
top-scoring ligand, with other known ligands included among the highest-scoring 
dockings. The screen ran in a few days on commonly available hardware. 

Address: Arris Pharmaceutical Corporation, 385 
Oyster Point Boulevard, South San Francisco, CA 
94080, USA. 

Correspondence: Ajay N Jain 
e-mail: jain@arris.com 

Key words: computational screening, 
conformational analysis, flexible docking, l igand 
binding, molecular docking 

Received: 27 Dee 1995 
Revisions requested: 22 Jan 1996 
Revisions received: 13 May 1996 
Accepted: 15 May 1996 

Chemistry & Biology June 1996,3:449-462 

0 Current Biology Ltd ISSN 1074-5521 

Conclusions: Hammerhead is suitable for screening large databases of flexible 
molecules for binding to a protein of known structure. It correctly docks a variety 
of known flexible ligands, and it spends an average of only a few seconds on 
each compound during a screen. The approach is completely automated, from 
the elucidation of protein binding sites, through the docking of molecules, to the 
final selection of compounds for assay. 

Introduction 
As the number of proteins with known structure has 
increased, molecular docking techniques have become 
prominent in lead compound discovery. The molecular 
docking problem begins with a three-dimensional struc- 
ture for an enzyme or receptor whose biological function 
can be modulated through the binding of small molecules. 
The goal of a docking algorithm is to generate the confor- 
mation and alignment (pose) of a small molecule that 
maximizes the value of a scoring function intended to 
predict the relative or absolute binding affinity. 

Here, we focus on using docking as a tool to screen large 
databases of small molecules against a given protein 
target, with the expectation of producing a set of potential 
lead compounds for assay and follow-up development. 
There have been a wide variety of docking algorithms 
proposed in the literature [l-8], but few are practical for 
large database screening due to long execution times and 
considerable human effort per ligand. A database screen 
typically produces a large number of successfully docked 
ligands, many of which are geometrically possible yet 
chemically unfavorable, and many more than it is 
generally practical to assay. The docking algorithm must 
rank the molecules, and only the most favorable will be 

assayed for activity. To be an effective screening tool, it is 
not enough for a docking algorithm to reproduce the 
known geometry of a flexible ligand in a protein binding 
site; it must also be able to recognize this geometry as the 
optimal pose and generate a reasonably accurate 
prediction of the binding affinity. If a non-crystallographic 
pose of a ligand scores significantly better than the 
crystallographic one, the docking algorithm’s ability to 
map contact geometries into binding affinities is suspect. 
If artificially high scores are assigned to non-binding 
ligand geometries, a high false-positive rate may result 
from the screen. 

A variety of scoring functions have been used to rank 
docked poses, including those using as their primary 
criterion steric contact [1,9], molecular mechanics [lo], 
electrostatic complementarity [l l] (the comparative 
performance of these is discussed in [ 121) adLo6 measures 
of steric and polar complementarity [2,4], and an 
empirically derived estimator of binding affinities [13]. 
Unfortunately, none of these scoring functions reliably 
ranks the crystallographically determined poses as being 
the best possible poses. A related problem is that the 
functions are unreliable at ranking the binding affinities of 
different ligands in the same site, and this can lead to a 
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large number of false positives in a screen. If the favored 
pose for a ligand diverges significantly from the experi- 
mentally determined one, the scoring function’s ability to 
rank candidate compounds for assay is questionable. 
Because of the general unreliability of scoring functions at 
ranking ligand binding, it is customary to use screening 
tools in a coarse-grained way, by selecting a large number 
of the top-scoring ligands and then relying on visual 
inspection and modeling techniques to manually select a 
small subset for actual assay. When using the DOCK 
program, for example, a great deal of human effort goes 
into this selection process [ 141. 

Even given a perfect scoring function where manual 
selection would not be necessary, docking is a difficult 
search problem. The number of possible poses (the pose 
space) that must be considered is huge. Disregarding 
protein flexibility, a pose includes the torsion angles of 
the ligand’s rotatable bonds, and the six rigid-body 
alignment parameters that position the ligand relative to 
the protein. It would take a prohibitive amount of time 
to score every possible pose. Suppose, for example, a 
ligand with four rotatable bonds is to be docked into a 
protein’s active site measuring roughly 10 A on a side. 
Considering angles in lo-degree increments and trans- 
lational parameters on a 0.5 A grid, there are over 
6 x 1014 poses to be tested, a computation requiring 
-2 000 000 years at the rate of 10 poses per second. 
Thus, only a very small proportion of pose space can be 
explored, and there must be a trade-off between search 
time and search thoroughness. 

Here we describe Hammerhead, a completely automatic, 
fast docking procedure for flexible ligands that uses an 
empirically tuned scoring function and an automatic 
method for identifying and characterizing the binding site 
on a protein. In a screen for compounds that bind to 
proteins with known ligands, Hammerhead predicts the 
natural ligand as the top-scoring compound in several 
cases, ranging from relatively weak interactions with 
limited ligand flexibility (e.g., trypsin-benzamidine) to 
strong interactions with significant ligand flexibility (e.g., 
dihydrofolate reductase (DHFR)-methotrexate). The 
algorithm is fast enough to allow screening of a library of 
roughly 10 000-100 000 small organic compounds in a few 
days, yet thorough and accurate enough that it correctly 
predicts crystallographic poses and binding affinities for a 
variety of known ligands. 

Results and discussion 
Hammerhead is composed of three principal compu- 
tational elements: an empirical scoring function that 
accurately predicts the affinities of a wide variety of 
known ligands given their crystallographic poses, a protein 
‘pocket finder’ that automatically identifies binding 
regions and ideal contact geometries on target proteins, 

and a fragment-based alignment and conformational 
search procedure for small molecules. 

The scoring function and the automatic pocket finder 
The scoring function is presented in detail elsewhere [15]. 
Briefly, the scoring function is a smooth nonlinear 
function that, given a ligand pose and a protein structure, 
estimates a binding affinity for the complex. The 
parameters of the function were tuned using a wide range 
of co-crystal complexes with known affinities (e.g., Fig. 1). 
The scoring function estimates binding affinities in units 
of -logKd, with an expected mean error of 1.0 log unit 
based on cross-validation. The function is differentiable 
with respect to ligand pose, so it is possible to refine a 
pose by performing gradient descent on the score, from a 
starting point some distance from the optimal pose. 

The automatic pocket finder uses the scoring function to 
determine where a ligand might make energetically 
favorable interactions with the protein. This is done by 
coating the protein surface with steric and polar probes 
(H, C=O, and N-H fragments), positioned so that each 
makes an optimal interaction with the protein, then 
searching for clusters of probes having high predicted 
affinities. From these clusters, a pocket (a focused subset 
of the probes) is automatically constructed, with the 
requirement that all portions of the pocket must be well 

Figure 1 

Co-crystal structure of biotin (yellow backbone) bound to streptavidin. 
Red, oxygen; blue, nitrogen; white, hydrogen. 
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connected, and that the overall pocket geometry must be 
amenable to small molecule ligands. The pocket finder 
designates particularly high-scoring probes, such as those 
making multiple hydrogen bonds or favorable 
hydrophobic ring face contacts, as anchor probes. A 
docking algorithm may use these anchor probes to focus 
the ligand alignment process by requiring that at least one 
of these energetically important interactions be made. 
The pocket produced for streptavidin is illustrated in 
Figure 2. The pocket finder has been applied to a wide 
range of crystal structures, and has successfully identified 
the known ligand-binding regions as the best-scoring 
pockets in every case. It is also a principled way of finding 
small-molecule binding sites when no sites are known, as 
is often the case with protein-protein interactions for 
which small-molecule antagonists are sought. 

Here, we focus on ligand alignment and conformational 
search procedures and how they combine with the scoring 
function and pocket finder to yield a fast, automated 
flexible docking algorithm. The approach for confor- 
mational searching breaks ligands into fragments and 
constructs poses one fragment at a time. The scoring 
function is used throughout the reassembly process to 
optimize partial poses and to score the current pool of 

The pocket finder locates a binding pocket on the protein by coating 
the protein surface with steric and polar probes and identifying 
clusters of probes with high predicted affinities. The streptavidin 
pocket probe set is shown, with the conformation of biotin from the co- 
crystal structure superimposed in yellow. N-H groups indicate ideal 
positions for hydrogen-bond donors; C=O groups indicate ideal 
positions for hydrogen-bond acceptors; and spheres indicate favorable 
hydrophobic contact points. 

poses so that only the best-scoring candidates are followed 
up. This search strategy reins in the combinatorial 
explosion in the number of poses that would accompany 
exhaustive follow-up. 

Docking algorithm overview 
Given a three-dimensional structure for a target protein, and 
an arbitrary conformation of a putative ligand, the goal is to 
compute a complementary pose for the ligand that 
maximizes the scoring function. To begin constructing a 
pose, it is assumed that, for a high-affinity small molecule, 
some portion will make a specific binding interaction with 
the protein above some threshold. This portion of the ligand 
we refer to as the head, because such functionality is often 
found at one of the ligand’s extremities. Head fragments are 
determined automatically by breaking ligands into 
fragments, aligning each of these onto the protein by 
matching ligand atoms with probe atoms, and retaining the 
best-scoring ligand alignments. For each possible head, the 
remaining molecule fragments (the tail) are aligned one 
fragment at a time into the probe neighborhood about the 
end of the current head, and then merged with the head to 
yield correct bond angles (a process that we term ‘chaining’). 
At each stage of the fragment alignment computation, 
gradient-descent pose optimization improves the confor- 
mation and alignment of the growing ligand, relaxing van 
der Waals surface interpenetrations of the ligand with itself 
and the protein, and improving hydrogen bond and 
hydrophobic surface contact geometries. 

For each partially constructed pose, there will typically be 
many possible alignments of the next tail fragment. This 
can lead to a combinatorial explosion in the number of 
alignments as a fragment chain is being assembled, just as 
can happen in a pure conformational search. But, because 
the partial conformations are situated in the protein, the 
scoring function can be used to rank them. Only the top- 
scoring partial poses are followed up, based on the 
principle that a high-scoring ligand will generally have 
good partial scores as well. This yields a search that grows 
roughly linearly with the number of fragments, although 
this is at the risk of losing some poses that do not 
distinguish themselves early on as winners. 

As an example of the potential savings of such a fragment- 
based approach over an exhaustive conformational search 
followed by rigid docking, suppose a ligand with 8 
rotatable bonds is to be conformationally sampled at 
1’20” increments at each bond. This is extremely coarse 
sampling, but nevertheless yields 38 conformations 
(roughly 6500) to be aligned to the protein and scored. If 
instead the ligand is split into three fragments having two 
torsions each (two torsions are eliminated by the 
fragmentation), and bonds are again sampled at 120” 
angles, there will be 3(fragments)*32(conformations) = 27 
total fragment conformations. Using a piecewise alignment 
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approach, and using the scoring function to rank and follow- 
up only the five best-scoring partial alignments at each 
stage, the entire process requires only 27(initial fragment 
alignments) + 5(follow-ups)*32(second fragment confor- 
mations) + 5(follow-ups)*32(third fragment conformations) 
= 117 total alignment calculations. 

Figure 4 

Various stages of this fragment-based docking approach 
are illustrated in Figures 3-5. A detailed description of the 
docking algorithm is given in Materials and methods . 

Tuning Hammerhead’s search parameters 
Pose space is much too large to search exhaustively when 
docking a ligand, so it is crucial to have a principled way of 
both focusing the search and of terminating it early for non- 
binding ligands, while ensuring the recognition of ligands 
that do bind. Hammerhead uses a variety of numerical 
search cutoff parameters to discard unpromising poses at 
various points in the docking process. These include score 
cutoffs for head fragments, root-mean-square deviation 
(RMSD) filtering thresholds for collections of aligned 
fragments, and the number of top-scoring fragments that After aligning the head fragments, other fragments of the l igand (tail 
will be followed up whenever a larger number is produced. fragments) are aligned to the head fragment and the pocket probes. 

These are described in detail in Materials and methods. These fragments are later merged with the head (see Fig. 5). Al ignments 
of biotin tail fragments onto the aligned hydantoin head and streptavidin 

Figure 3 
pocket probes are shown. The probe atoms are not shown; the pose of 
biotin in the co-crystal structure is shown in blue for reference. 

Choosing values for these parameters is an empirical issue, 
and it is not particularly difficult to tune Hammerhead on 
a single complex to generate dockings with 1 or 2 A 
RMSD from the crystal structure with a search time of a 
few seconds, for that lone example. But such focused 
tuning is of little value for database screening as, in this 
situation, the algorithm must be able to find many 
different kinds of binding motifs and search many 
different chemical functionalities. By seeking parameter 
settings that allow high-scoring poses to be discovered 
over a broad range of controls (at the expense of longer 
search times), the false negative rate of the screening tool 
on novel complexes should be decreased. 

Hammerhead determines the optimal pose of a l igand by breaking it 
into fragments and aligning them with the pocket probes. The 
fragments that make specific binding interactions above a certain 
threshold are referred to as head fragments. The alignment of biotin 
head fragments to the streptavidin probes is shown. The probe atoms 
are not shown; the pose of biotin from the co-crystal structure is 
shown in blue for reference. The top-scoring head is the hydantoin 
fragment (red). Next best is the flexible methylene chain in green. The 
two ‘incorrect’ alignments of this fragment (yellow, cyan) score 
significantly lower than the other alignments. 

We used four protein-ligand crystal structures as positive 
computational controls for tuning.Hammerhead’s search 
parameters: DHFR-methotrexate, trypsin-benzamidine, 
streptavidin-biotin, and thrombin-NAPAP (N-alpha-(& 
naphthyl-sulphonyl-glycyl)-~~-p-amidinophenylalanyl- 
piperidine) [15]. The ligands have from 1 to 11 freely 
rotatable bonds, and binding affinities ranging from 104.7 
to 10-13.4, and form a variety of hydrogen bonds, salt 
bridges, and hydrophobic interactions with their respect- 
ive proteins. Geometrically, this is a diverse set, with each 
of the ligands exhibiting a different kind of flexibility and 
binding mode: benzamidine is small and mostly rigid, 
methotrexate has two rigid fragments and a flexible tail 
bound in a large pocket, biotin has a rigid head and a 
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Figure 5 

The tail alignments from Figure 4 are merged with the head, yielding 
completed poses for biotin. The pose of biotin in the co-crystal 
structure is shown in blue for reference. 

flexible tail bound in a very constricted pocket, and 
NAPAP contains two hydrophobic ring systems (one 
aromatic, one aliphatic) that must be inserted into a large 
pocket in a highly constrained manner. Pockets (probe 
sets) were generated for each of these proteins using the 
automatic pocket finder; some of the probe statistics are 
summarized in Table 1. Because Hammerhead’s fragment 
breaking/chaining and conformational search procedures 
take their bond lengths and bond angles from the input 
conformation of the ligand, the ligand must have 
an energetically reasonable geometry. Therefore, the 
crystallographic ligand conformations were energy 
minimized in vacua prior to docking. 

The parameter settings used to successfully dock all of 
the test cases in a minimum amount of time are listed in 
Table 2. These were determined by first tuning those 
parameters related to rigid alignment, so that a favorable 
head alignment for each of the controls was produced in a 
minimum amount of time. Geometric chaining parameters 
were then established that allowed the tails to be 

Table 1 

Breakdown of pocket probes. 

Protein Donors Acceptors Sterics Total Anchors 

DHFR 34 24 205 263 42 
Trypsin 35 17 69 121 43 
Streptavidin 19 16 146 181 51 
Thrombin 51 15 233 299 50 

Table 2 

Hammerhead search oarameter settinas.a 

Min break torsions 3 Nhood points 
Min break atoms 20 Match tries 
Sample angle 120” Match error 
Sample min RMS l.OA Match RMS 
Sample min linker 30” Head min 
Match min 4 Optimize heads 
Match max 8 Keep heads 
Ligand points 15 Keep tails 
Merge distance 2.6 ii Merge angle 

aFor definitions, see Materials and methods. 
bRepot-ted as -log K,. 

20 
100 

1.5A 
l.OA 
3.0b 

20 
3 

20 
57” 

successfully aligned onto the head fragments (whose 
poses typically deviated slightly from the poses in the 
crystal structures). Finally, score-related search cutoffs 
were chosen to increase overall search speed while 
retaining the successful poses. 

Positive controls: performance on known complexes 
The search parameters listed in Table 2 were set by 
tuning the algorithm using a single minimized confor- 
mation of each control ligand. As a more thorough positive 
control, we explored Hammerhead’s sensitivity to the 
conformation of the input ligand. The conformations of 
biotin, methotrexate and NAPAP were stochastically 
sampled, and 20 conformations were generated for each 
ligand; the conformations were then energy minimized in 
vacua using MM2 or AMBER force-fields (the fourth 
control, benzamidine, had only one conformation after 
minimization). In an actual screen of a chemical database, 
of course, each compound would appear in only one, 
arbitrary, energy-minimized conformation. 

Hammerhead was applied to these sampled conform- 
ations using the probe sets generated by the pocket- 
finder, with and without the anchor-probe restriction, 
which stipulates that at least one head fragment atom be 
aligned with an anchor probe. The dockings produced 
were generally identical, with or without the anchor 
restriction, although the search was faster with the 
restriction. A variety of torsion angle sampling densities 
were tried, but the original sparse sampling at 120” 
increments (followed by van der Waals relaxation) proved 
to be the most time-effective. The results of the dockings 
of the multiple conformations of the four controls are 
summarized in Table 3. 

There are two key considerations in assessing the 
performance of the docking algorithm as a screening tool, 
based on these positive controls. The most critical issue is 
whether the docking of each of the ligands results in a 
computed binding affinity that is above a threshold to be 
assayed, implying that we would actually test the 
compound as a result. In a screening run, ligands that 
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Table 3 

Performance with positive controls. 

Target -logK,, 
actual 

-logK, RMSD from 1 .O log average -LogKd % of hits close to Find 
max, found crystal structurea RMSD between min crystal pose compound 

high-scoring poses in screen? 

Trypsinlbenzamidine 4.7 6.0 0.6 0.6 6.0 1 00 o/o 1 00 a/o 
Streptavidin/biotin 13.4 12.5 0.6 0.5 10.2 1 00 % 1 00 o/o 
DHFR/methotrexate 9.7 10.1 1.7 1.5 6.4 60 % 1 00 % 
Thrombin/NAPAP 8.5 8.8 1.3 2.9 4.9 25 % 100% 

aRMSD, root mean square deviation. A heavy-atom RMS measures the posed ligands. It is used to avoid atom-numbering artifacts when 
RMS distance between the nearest atoms of the same type on two symmetric sub-structures are mirror-aligned. 

dock with scores above some threshold are considered 
‘hits’ and are investigated further with assays. Given that 
the best expected error of the scoring function is 1.0 log 
units [15], the threshold on scores is set at 4.0 (score units 
are -logKd) to reliably detect ligands that bind with 
affinities of 10 pM or better. Thus, it is not absolutely 
necessary that the pose with the maximum possible score 
be generated, so long as a pose is found that demonstrates 
the ligand can score above the screening threshold. In all 
four positive-control screens, beginning with all randomly 
selected conformations, Hammerhead generated poses for 
the ligands that exceeded the screening threshold. 

To determine the validity of the scoring function, it is also 
important to determine that the best-scoring poses of the 
ligands correspond to the crystallographically determined 
poses. If poses divergent from this correct pose yield 
significantly better scores than those near the correct pose, 
it is very likely that the scoring function is not performing 
adequately and will generate false positives. In all four 
cases, across all dockings, the best-scoring poses were 

Figure 6 

Hammerhead accurately reconstructs the crystallographically determined 
pose for benzamidine bound to trypsin. The top-scoring poses are 
shown. The pose of benzamidine in the co-crystal structure is shown in 
blue for reference; the highest-scoring docked pose is in red. The phenyl 
group in the docked poses is rotated out of the plane of the amines to 
avoid a van der Waals clash. The planar conformation in the crystal 
structure is not energetically favorable, and the underlying density map 
may be an average of the docked conformations. 

within 1.8 A of those determined crystallographically and 
the scores were within 1.3 log units of the correct affinities. 
The mean RMSD of the highest-scoring poses was 1.0 A, 
and the mean error of computed affinity was 0.7 log units. 
Thus, Hammerhead successfully reconstructed the 
optimal binding modes for the controls and recognized 
them as such. No alternative poses were judged to have 
higher affinities. Additionally, for benzamidine, biotin and 
methotrexate, any pose that deviated significantly from the 
correct pose did not score nearly as well, as shown by the 
low average RMSD for poses that scored within 1.0 log 
unit of the top-scoring pose. The scoring function maxima 
are narrow enough that the correct poses were clearly 
distinguishable from any others solely on the basis of their 
scores. Examples of these maximal and near-maximal 
docked poses appear in Figures 6-9. 

Considering all poses that scored within 1.0 log units of the 
maximal pose in affinity, the mean RMSD is extremely 

Figure 7 

Hammerhead accurately reconstructs the crystallographically determined 
pose for biotin bound to streptavidin. The top-scoring poses are 
shown. The pose of biotin in the co-crystal structure is shown in blue 
for reference; the highest-scoring docked pose is shown in red. 
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low for all but the thrombin-NAPAP complex. For this 
control, Hammerhead always placed the benzamidine and 
piperidine portions of NAPAP in the correct binding 
positions, but often left the naphthalene moiety rotated 
out into solvent. This explains the low percentage of 
docked poses that were close to the crystallographically 
correct poses (Table 3). An alternative binding mode was 
also discovered that placed the naphthalene group on the 
outside of Trp600, effectively sandwiching the tryptophan 
between NAPAP’s hydrophobic ring systems. The 
predicted affinity for this pose is very nearly that of the 
top-scoring pose, explaining the larger average RMSD for 
high-scoring poses. The methotrexate example showed 
some similar effects. All methotrexate dockings correctly 
positioned the pteridine fragment, but several dockings 
left part of the acidic tail rotated out into solvent. It is 
important to note that these alternative poses for NAPAP 
and methotrexate scored well enough to exceed the 
screening threshold, so the compounds would have been 
assayed as a result of docking even in cases where their 
predicted poses were only partially correct. 

Run-times on compound libraries 
In a screen of a large chemical database, Hammerhead’s 
run-time is an important consideration. The examples 
discussed in the previous sections range from 20s to 400s 
docking time per ligand on an SGI R4400 150 MHz 
processor. In a screen of a large database, docking times 
of hundreds of seconds per compound would be 
prohibitive. Fortunately, Hammerhead’s search algorithm 
typically takes much less time to decide that something is 
a docking miss than it does to produce an optimal pose 
for a hit; and the vast majority of compounds in a 
database screen will be misses. The average run-times for 

Figure 8 

Hammerhead accurately reconstructs the crystallographically determined 
pose for methotrexate bound to DHFR. The top-scoring poses are 
shown. The pose of methotrexate in the co-crystal structure is shown 
in blue for reference, the highest-scoring docked pose is shown in red. 
Several alignments of the pteridine fragment emerged as the best- 
scoring heads, and the phenyl and carboxy tail fragments were chained 
from these. 

Figure 9 

Hammerhead detects an alternative binding mode for NAPAP in 
thrombin. The top-scoring poses are shown. The pose of NAPAP in the 
co-crystal structure is shown in blue for reference; the highest-scoring 
docked pose is shown in red. Several alignments of the benzamidine 
fragment emerged as the best-scoring heads, and the piperidine and 
naphthalene groups were chained from these. The poses that rotate the 
naphthalene group out into solution (green and cyan) rather than tucking 
it into the pocket score significantly lower than the pose with the correct 
binding mode (red), but high enough that NAPAP bound in these poses 
would still be selected in a screen of thrombin inhibitors. 

misses from a collection of 1000 compounds, randomly 
selected from the Available Chemicals Directory (ACD), 
are shown in Table 4. The compounds all have six or 
fewer rotatable bonds, and the distribution of flexibilities 
matches that of the complete ACD. The fragment 
breaking/chaining procedure is used for ligands with 
more than three rotatable bonds, and straightforward 
conformational sampling followed by rigid docking is 

Table 4 

Average docking time versus ligand torsions for computational 
‘misses’ from 1000 random compounds against streptavidin. 

#Torsions #Liaands Time Ma Time Mb 

0 135 13 7 
1 192 19 9 
2 205 47 22 
3 187 89 36 
4 134 66 39 
5 63 105 61 
6 10 115 67 

aWithout anchor-probe restriction. 
bWith anchor-probe restriction. 
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ge docking times for computational ‘misses’ for the 
~1 pockets. 

Time (s)~ 

avidin 52 
1 56 

71 
bin 89 

jut anchor-probe restriction. 
anchor-probe restriction. 

Time (s)~ 

25 
9 

12 
9 

elsewhere. The average time to detect a docking 
within this set of 1000 ligands is shown in Table 5 
ch of the control proteins. These dockings were run 
with and without the anchor-probe restriction. Using 
)r probes makes a dramatic improvement in the 
ge run-times for these misses because the 
mutational time for a miss consists mainly in 
vering that there are no suitable head fragment 
nents, a search that is expedited by restricting 
nents to using at least one anchor probe. It is this 
ge time performance that makes Hammerhead 
cal for screening large libraries of compounds. 

iive controls: a computational screen of the ACD 
nore ambitious computational test of Hammerhead, 
n a screen of the ACD against streptavidin. As the 
tavidin-biotin interaction is so strong, this experi- 

provides a nice set of computational negative 
01s for Hammerhead. It is extremely unlikely that 
CD contains molecules that are better ligands for 
;avidin than biotin and its close analogs. The ACD 
ins over 100 000 compounds, including biotin and a 
)er of other known ligands to streptavidin. A set of 
0 compounds was generated by protonating and 
nizing the three-dimensional structures generated by 
rogram CONCORD for molecules containing seven 
wer torsion bonds. These were docked into the 
:avidin pocket. The screen ran in under five days, 
a variety of SGI Indigo and Challenger processors, 

about four processors running at any given time 
lines drew ligands from a shared pool). The screen 
Iced 565 compounds with scores predicted better 
4.0 (100 PM). A histogram of the scores of the 
:d compounds is shown in Figure 10. 

~1 binding assays for compounds discovered in this 
n are ongoing and will be presented elsewhere. 
ugh it is not expected that a majority of these 565 
ounds will actually bind to streptavidin, preliminary 
indicate the presence of novel specific ligands. 
nerhead’s ranking of known streptavidin ligands in 
:reen was an important computational control. The 
of biotin, iminobiotin, desthiobiotin, and HABA 
rdroxyazobenzene-Z-carboxylic acid) amongst the 

Figure 10 

600, I 

2 J) 200. 
E 

2 
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4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 

Score (-IogKJ 

Hammerhead selects molecules from the ACD with high affinity for 
streptavidin. The number of molecules scoring greater than or equal to 
a given score (out of 80 000 molecules screened) is plotted. Biotin 
and its analogs scored higher than any other compounds in the screen 
(see also Table 6). 

screening hits is shown in Table 6. (Thiobiotin, another 
high-affinity streptavidin ligand, is not present in the 
ACD, although Hammerhead successfully docks it with a 
score of 7.8). Biotin was predicted to bind with the highest 
affinity, scoring 2 log units better than any non-biotin 
derivative. Iminobiotin docked within 0.7 .& of biotin’s 
alignment. Desthiobiotin did not successfully dock at first, 
but examination of the ACD-provided structure revealed 
the wrong stereoisomer was present (optical isomers are 
not enumerated during a screen). A conformation of 
desthiobiotin with chirality similar to biotin docked within 
0.7 A of the biotin structure and scored 10.5. Thus, the 
docking procedure is specific enough to distinguish the 
handedness of the streptavidin pocket. HABA scored close 
to its assayed value, but the ligand clashed with the protein 
badly enough that it was not retained in the screen. This 
could be due to the treatment of the protein as rigid. 

Table 6 

Affinities and ranks of biotin and derivatives for binding to 
streptavidin in a screen of the ACD. 

Ligand -logK, -logKd 
actual predicted 

Rank1565 

Biotin 13.4 11.5 1 
Desthiobiotir? b 10.5 2 
lminobiotin 10.5c 10.3 3 
HABA 4.0 4.4 d 

%tereoisomer of ACD CONCORD structure. 
bAffinity unknown. 
cAffinity of binding to avidin. 
dExcessive protein interpenetration; pose was not retained in screen. 
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Other considerations for large-scale screening 
One consideration that is not addressed in the positive 
controls, but which becomes important in large-scale 
screening, is protein flexibility. Small conformational 
changes are expected to occur in the protein upon ligand 
binding, which relieve protein-ligand clashes and opti- 
mize the particular ligand’s binding. Hammerhead treats 
the protein as rigid during the docking process; however 
it does contain a separate scoring function, which 
provides a measure of protein-ligand interpenetration, 
computed from the penetration of the ligand’s van der 
Waals surface into the protein surface [15]. This 
interpenetration measure is not used when computing 
the binding affinity. Unlike other scoring function 
parameters, such as hydrogen bond strengths and 
distances, the range and relative importance of this 
interpenetration score cannot be deduced using the 
positive controls, since none of them exhibits significant 
interpenetration. Thus, the interpenetration score is 
treated as an independent quality measure, and is used 
during docking to discard ‘hopelessly’ interpenetrating 
poses. Hammerhead will ultimately produce poses with a 
range of interpenetration scores under this discard 
threshold. A high score implies that the ligand does not 
actually fit into the pocket, and its affinity prediction is 
therefore questionable; a ligand with a small value, on the 
other hand, might be accommodated by the protein. 
Although the accuracy of the binding affinity predictions 
will probably suffer by not considering protein flexibility, 
the estimates should still be useful for selecting a set of 
compounds for assay. The discard threshold for the 
interpenetration score can only be determined empir- 
ically, and will probably be a function of the target 
protein’s binding-site geometry. To gain an understanding 
of this parameter’s effect, Hammerhead is being run on a 
variety of test systems, and computational hits having a 
range of interpenetration scores are being assayed. 

Another consideration that is not resolved by examination 
of crystal structures is the cost of ligand and protein de- 
solvation. None of the 34 crystal structures used to tune 
the scoring function shows significant contact between 
polar atoms on the ligand or protein and an opposing 
hydrophobic surface, so it was not possible to deduce the 
cost of displacing solvent molecules from unmatched 
polar sites during ligand binding. Many of the compounds 
docked in the streptavidin screening run have unmatched 
polar features, and the expected reduction in binding due 
to solvation effects is not well modeled by the scoring 
function. As with the interpenetration discard threshold, 
it may be possible to empirically calibrate the solvation 
threshold, if the screens and assays of test systems 
produce a variety of ligands having buried polar surfaces. 
As solvation effects do not vary much as a function of 
pose (for a fixed binding mode), we expect that the 
solvation threshold could be applied as a final screening 

filter, rather than having to be integrated into the docking 
and scoring processes. 

Relation to previous flexible docking approaches 
Several docking approaches have been discussed in the 
literature [l-8]. Our approach has elements in common 
with each of these. One of the earliest published 
approaches, DOCK [l], is commonly used as a screening 
tool. The approach begins with the construction of a 
negative image of the target site - a set of spheres posi- 
tioned outside the target against its solvent-accessible 
surface. Typically, a large set of spheres (300-400) is gener- 
ated automatically, and these are edited by hand down to a 
manageable set (40-60), focusing the search towards 
particular regions of the protein surface. To dock a ligand, 
internal distances between ligand atoms are matched 
against distances between subsets of the sphere centers, 
and, when these agree within some tolerance level, the 
ligand atoms are aligned onto the matching spheres. 
Finally, the aligned ligand is tested for protein 
interpenetration, and the alignment is discarded if it 
interpenetrates excessively. A more recent screening tool, 
FLOG [Z], uses a similar matching procedure to align 
ligands, and refines the alignments online, allowing some 
poor alignments to be salvaged, as well as improving the 
complementary positioning of the hydrophobic and polar 
features of the ligand. 

Both of these approaches focus on rigid alignment of a 
given ligand conformation. The docking algorithm FLOG 
accounts for some ligand flexibility within this rigid 
alignment framework by storing a number of different 
conformations (10-20) of a ligand and docking each one 
separately. The problem with this approach to ligand 
flexibility is that the number of conformations required to 
span the conformation space scales up exponentially with 
increasing numbers of rotatable bonds, and thus there is 
good chance that the correct conformation will have been 
missed, even for ligands of limited flexibility. 

A number of docking approaches have attempted to 
incorporate conformational search directly into their 
ligand placement procedure by using, for example, 
stochastic optimization techniques such as simulated 
annealing [3] or genetic algorithms [4]. Although each of 
these approaches has been shown to be viable for flexible 
docking, they are both extremely slow. Fragment-based 
approaches, similar to Hammerhead’s, have also been 
proposed. The algorithm developed by DesJarlais et al. [S] 
breaks a ligand into rigid fragments, aligns all of the 
fragments onto the protein, and merges those fragments 
whose linkers are close enough to one another. Gradient 
descent on an energy field is used to adjust the positions 
of merged fragments. The dockings performed by 
DesJarlais et al: [S] use ligands with only two rigid 
fragments, and this approach will probably suffer from a 
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combinatorial explosion of the size of the pose space for 
very flexible ligands. Our approach narrows its search by 
selecting a few promising head-fragment alignments, then 
focusing successive fragment alignments onto the linkers 
to which they must merge. Because the scoring function is 
reliable at ranking (and improving) the poses of 
intermediate fragments, this search strategy can succeed 
without examining an exponentially large number of poses, 
and many more flexible ligands can be docked successfully. 

The docking algorithms DOCK [6], FLEXX [7], and 
ADAM [8] all reconstruct a ligand by chaining from of an 
aligned head fragment. They attach fragments to the 
rooted ligand by re-joining the linkers at a discrete set of 
torsion angles. This approach may miss the exact angle 
needed to thread a flexible ligand into a very specific 
pocket. Our method of aligning a fragment onto a linker 
neighborhood and then merging it with the aligned head 
allows the protein itself to suggest the best angle for the 
joint. Further, the automatic fragment decomposition and 
head alignment procedure obviates the need for a human 
to select the head fragment, a limitation of each of these 
earlier fragment-based approaches, which precludes their 
use as screening tools. 

flexible acid tail, so it is not clear how well the approach 

FLEXX and ADAM both make use of a scoring function 

works for truly flexible ligands. 

to rank intermediate poses and follow only the best- 
scoring candidates, as a way of controlling combinatorial 
expansion of the search. ADAM is similar to our approach 
in the way it uses a scoring function to refine intermediate 
poses. However, as in the work of DesJarlais et a/. [5], 
ADAM’s docking of methotrexate in DHFR disregards its 

ligands. We expect that high-scoring ligands from a 
screen of a large chemical database could be ordered 
and assayed without additional modeling or selection 
effort by a human. 

Hammerhead performs well on predicting the pose of 
several known flexible ligands bound to various 
proteins: benzamidine to trypsin, biotin to streptavidin, 
methotrexate to DHFR, and NAPAP to thrombin. The 
top-scoring poses are very close to the experimentally 
determined ones and the predicted binding affinities of 
these poses are within 1.5 log units of experimentally 
measured affinities. With the exception of a reasonable 
alternative binding mode for NAPAP, poses that diverge 
from that in the co-crystal structure score substantially 
less than those that are similar. This ability to rank 
poses is critical for controlling the number of false 
positives in a database screen. 

Hammerhead also performs well with a variety of 
negative controls. A screen of the 80 000 commercially 
available flexible molecules against streptavidin was 
completed in a few days. The top-scoring ligand was 
biotin, in its experimentally determined conformation, 
closely followed by biotin derivatives. We are currently 
using Hammerhead to screen various databases for 
novel ligands of proteases and cytokine receptors. 

Materials and methods 
Detailed description of the docking algorithm 
The fragment-based alignment algorithm is outlined below, followed by 

Input: a protein structure, a set of pocket probes (H, C=O, and N-H 
fragments) complementary to the active site, and a ligand in an 

a more detailed description of the steps and parameters involved. 

arbitrary, in vacua minimized, conformation. 

Finally, the previously described docking approaches 
select protein regions for docking either as neigh- Output: A set of ligand poses and a predicted binding affinity for each. 

borhoods around the structure of the bound ligand or by 
adhoc modeling techniques. Hammerhead’s use of auto- 

1. Generate ligand fragments: 
a. Break the ligand into fragments, each containing a limited 

matically generated pocket probes eliminates human number of rotatable bonds. 

analysis and bias in protein docking site selection, and b. Systematically search each fragment’s conformations and 

makes it possible to determine potential binding sites in 
retain a diverse set. 

2. Comoute a set of head fraaments and Doses: 
a principled way. a. Rigidly align each of the ligand fragment conformations onto 

the Docket orobes. 

Significance 
We have presented a fully automated, flexible, 
molecular-docking procedure, Hammerhead, that is 
suitable for screening databases of tens of thousands of 
compounds for binding to a protein. Potential binding 
sites on a target protein are automatically determined 
and collected into geometrically plausible pockets. 
Flexible ligands are automatically broken into 
fragments, docked to the protein, and reassembled in 
place to find optimal poses. All of this is overseen by an 
empirical scoring function that reliably predicts binding 
affinities for a wide range of known small-molecule 

b. Refine ‘each pose, and eliminate each alignment that 
excessively interpenetrates the protein. 
c. Retain the top-scoring aligned fragments as heads. 

3. For each of the heads align each successive ligand fragment 
a. Rigidly align the fragment’s sampled conformations onto the 
probes at the tail of the partial pose. 
b. Merge each aligned fragment with the partial pose so their 
shared bond geometries agree. 
c. Refine the new partial pose, then eliminate those that 
excessively interpenetrate protein. 
d. Retain the best-scoring partial poses for addition of the next 
fragment. 

There are a number of parameters that control this procedure, trading 
off search thoroughness for speed. Nominal values for each parameter 
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Figure 11 

Linker bond break 

Linker atom: 
bO or CH2, 

Linker atom break 

Breaking a molecule into fragments. For a break at a single rotatable 
bond (a linker bond break), each fragment retains a copy of the linker 
bond, and these will be overlaid when the fragments are eventually 
merged. For a break at a methylene carbon or ether oxygen (a linker 
atom break), each fragment retains a copy of the shared linker atom, 
and the methyl hydrogens are temporarily discarded. When the 
fragments are later merged (see Figs 14,15), the linker atoms are 
overlaid and the methyl hydrogens are then replaced. 

name in the discussion below (obtained by tuning the search 
procedure on a diverse set of co-crystal structures) appear next to the 
parameter name and also in Table 2. 

Generating conformationally sampled ligand fragments 
To break a ligand into fragments, first the set of freely rotatable bonds 
is determined. These are single bonds between non-terminal atoms 
that separate the ligand into two disjoint pieces (this excludes bonds 
that are part of ring systems, which will be addressed in future work). 
Bonds to symmetric end-groups like methyl groups are excluded, since 
it is not necessary to enumerate these rotamers. Any non-terminal 
methylene carbons or ether oxygens are identified. These are referred 
to as linker atoms and are always situated between two rotatable 
bonds. Ligands are preferentially broken at linker atoms (a linker atom 
break), but are broken at single rotatable bonds (a linker bond break) 
when no suitable linker atom is present (Fig. 11). Linker atom breaks 
are preferable to bond breaks because two unspecified torsion angles 
are solved simultaneously, and the alignments of the two fragments are 
less likely to be disturbed than with a bond break, which has a single 
free torsion angle. 

Once linker atoms and breakable bonds have been identified, the 
ligand is broken into halves, using the linker break that yields the most 
balanced number of atoms in each fragment. If no balanced linker 
break can be found (nominally, each new fragment must be greater 
than l/4 the size of the whole), the most balanced bond break is used 

The fragment breaking algorithm applied to methotrexate yields three 
fragments joined by two linker carbons. The pteridine fragment is on 
the left, the acidic tail on the right. 

instead. This breaking continues recursively until either the fragment 
has become too small (min break atoms = 20) or the fragment has few 
enough rotatable bonds that it can be conformationally searched as a 
whole (min break torsions = 3). Then, conformations for each fragment 
are systematically generated by rotating bonds in fixed angular 
increments (sample angle = 120”) and relaxing away from internal van 
der Waals clashes. Figures 12 and 13 illustrate the fragment 
decompositions of methotrexate and NAPAP. 

When internal van der Waals clashes restrict the range of fragment 
conformations, the systematic conformational search can yield clusters 
of similar conformations (after clashes have been relaxed). To eliminate 
this redundancy, the sampled conformations are filtered based on their 
atom center RMSD, measured after performing a least-squares 
alignment of the conformations onto one another, 

During this fragment filtering process, it is important to protect diverse 
linker orientations, since these determine the range of directions in 
which successive fragments can be joined to the current one. To 
maintain a diverse linker population, the linker portion of the fragments 
is not used in computing the least-squares alignments of the fragments 
onto one another, or in computing the RMSD. Instead linker angular 
differences are measured separately (after alignment). Only fragments 
whose RMSD and linker direction differences are small enough 
(sample min RMS = 1 .O A, sample min linker = 30”) are eliminated. 

Rigid alignment onto pocket probes 
One of Hammerhead’s fundamental operations is rigid fragment 
alignment. Fragment conformations must be aligned to the protein to 
search for a head fragment and to generate alignments of the tails of 

Figure 13 

The fragment breaking algorithm applied to NAPAP yields three 
fragments joined by two linker carbons. The naphthalene group is on the 
left, the piperidine in the center, and the benzamidine group on the right. 
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partial poses to reconstruct full poses. In this rigid alignment that are maximally distant from one another is collected, starting with 
procedure, the pocket probes serve as protein ‘handles’ to which the point most distant from all others. Finally, samples are added at the 
fragments are aligned (Figs 1,2 show the crystal structure of biotin center of each atom capable of donating or receiving a hydrogen bond 
bound to streptavidin and the automatically generated probe set for or of being involved in salt-bridging (polar points). 
streptavidin, respectively). Once an initial alignment has been 
computed that overlays some subset of the probes, the actual protein 
structure is used to refine the pose through gradient descent on the 
scoring function, simultaneously adjusting the fragment’s bond angles 
and alignment. 

The rigid alignment approach is related to that used in earlier docking 
work [1,2,91. The idea is to match points on the fragment with pocket 
probes having compatible internal distances, then compute a rigid- 
body transformation that overlays the corresponding points as closely 
as possible. The rigid-body calculation is straightforward, given a set of 
pairs of ligand-probe points (a match). It is the search for matches that 
requires most of the work. 

Only three pairs of points are needed to uniquely determine a rigid 
alignment, so some rigid alignment approaches simply enumerate all 
such matches. This leads to a large number of alignments, many of 
them duplicates (computed from disjointed subsets of paired points) 
and many of them nonsensical (having extreme ligand-protein 
interpenetration). Other approaches search for much larger matches to 
align multiple ligand features onto protein features, and thus these 
approaches produce fewer high quality alignments. But the number of 
different pairings that must be considered grows factorially with the 
size of the match desired. In our experience, the quality of the 
alignments does not correlate well with the size of the match beyond 
some fragment-specific size. 

Hammerhead searches for relatively small matches (having match 
min = 4 to match max = 8 pairs), but enumerates them in a geomet- 
rically diverse order. Below, an outline of the alignment computation is 
provided, followed by a discussion of each step involved. The 
enumeration can be terminated early (typically with 50-200 matches) 
rather than having to blindly generate all possible matches (typically 
numbering in the tens of thousands), and this means that fewer 
alignments must be generated and tested later, in the fragment 
chaining process. 

The rigid alignment algorithm proceeds as follows: 

1. Sample the fragment at hydrogens, ring faces, and heteroatoms. 
2. For each pocket probe, root a match search: 

a. Collect the probes near the root probe and sample them as 
was done with the ligand. 
b. For each ligand point of the same type as the root probe 
(steric, donor, or acceptor): 

i. Pair the ligand point and root probe. 
ii. Enumerate additional point-probe pairings having 
compatible internal distances in decreasing order of their 
distance from the points already in the match, and retain any 
matches of acceptable length. 
iii. Terminate the search after a predetermined number of 
pairings have been considered. 

3. Compute rigid body alignments from the matches, and cluster the 
alignments. 

Fragment and probe sampling 
For rigid alignment, fragment shapes are represented as a collection of 
discrete sample points. Samples are placed at the center of each 
hydrogen atom (a steric point), and also in the centers of aromatic ring 
faces, offset one hydrogen radius from the surface for compatibility 
with the hydrogen-centered steric points. This procedure can yield 
many sample points, but it is the points at ligand extremities that are 
most important for constructing productive alignments. Therefore, to 
speed the match search, a subset of these points (ligand points = 15) 

Each match search is rooted at a particular probe. Probes more distant 
from the root probe than the ligand’s maximum width cannot be paired 
with any ligand point and are thus ignored, leaving a smaller probe 
neighborhood to match against. This neighborhood is sub-sampled as 
was done for the ligand (nhood points = 20). For efficiency, this is pre- 
computed and cached for neighborhood samplings for a small set of 
fixed radii. The neighborhood sampling having the smallest inclusive 
radius is used when matching ligand points. 

Match enumeration 
A match is iteratively lengthened by searching for a pairing of 
ligand-probe points whose internal distances to points already in the 
match are equal, within a given error tolerance (match error = 1.5 A). 
The search is depth first; pairs are added to a given match until its size 
reaches the match max threshold, or there are no more compatible 
pairs, at which point the match is recorded. When there are no more 
compatible pairs to lengthen a given match, the search backtracks and 
resumes with earlier, shorter sets of pairings. 

Rather than exhaustively enumerating matches, Hammerhead 
terminates branches of this search early. For each possible initial match 
of length 2, a fixed maximum number of attempts are made to extend 
the match length by considering new pairs (match tries = 100). To bias 
this prematurely terminated search towards matches that more 
thoroughly cover the ligand, new pairs are tested in decreasing order 
of their distance from the points already in the match. This leads to 
higher quality alignments than matches that focus on localized subsets 
of the ligand points. For this reason it performs better than an 
enumeration that adds pairs in an order that minimizes accumulated 
match error, since the set of match points that gives the least total error 
may be clustered about only a portion of the molecule. 

Computing and clustering alignments 
Given a list of corresponding fragment-probe points, it is a 
straightforward calculation to compute a rigid-body transformation that 
aligns the fragment with the probes while minimizing the RMSD of 
corresponding points. Although match enumeration has been 
structured to generate a diverse collection of alignments, there will still 
be some redundant alignments generated (from mutually consistent 
but disjointed sets of points); thus additional filtering is warranted. It is 
not safe to filter alignments by computing the RMSD of their rotational 
and translational parameters. Instead, the computed alignments are 
applied to the fragment and a final RMSD filtering is performed based 
on the transformed fragment atom centers (match RMS = 1 .O A). 

Computing head fragment poses 
We assume that there is at least one fragment of the ligand that makes 
a high-scoring interaction with the protein, specific enough that the 
fragment’s optimal positioning is highly constrained. Rather than 
attempt to decide a priori which (if any) fragment of the ligand 
functions in this way, such head fragments are discovered 
automatically by docking all conformations of all fragments into the 
pocket and retaining the highest-scoring fragment poses. The steps in 
this process are outlined below: 

1. Align each fragment conformation onto the pocket probes, and 
eliminate those that excessively interpenetrate the protein. 

2. Sort them by score, and RMS-filter similar poses (match RMS), 
preferentially retaining the higher-scoring poses. 

3. Briefly refine the top scoring poses. (optimized heads = 20). 
4. Sort the aligned conformations by score, and retain the top scorers 

as aligned head fragments (keep heads = 3). Discard any head 
fragments that score too low (head min = 3.0) 
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The filtering step is important, because it leaves only the best-scoring 
exemplar of each fragment binding mode, reducing the number of 
candidates to be considered as possible heads. There is no 
guarantee that the chosen exemplar is the ‘correct’ one, but the 
expectation is that the retained one is close enough that subsequent 
scoring-function refinement during the reconstruction of the ligand 
(which adjusts torsion angles and the fragment alignment) will yield a 
suitable conformation. 

The overall docking algorithm depends on one of the high-scoring 
fragment poses leading to the highest-scoring pose for the whole 
ligand; nevertheless, the top-scoring fragment need not be expected to 
do so. In addition to its correct pose, a fragment may have unrelated, 
better-scoring poses, and therefore a number of high-scoring head 
fragment poses (keep heads = 3) are retained. 

As a final shortcut in computing head alignments, a restricted set of 
anchor probes is used instead of the entire pocket (see Table 2). These 
are probes that have been designated by the automatic pocket finder 
as making a particularly favorable set of interactions with the protein. 
Matches are rooted only at these anchor probes, although the entire 
set of probes is still used for constructing the remainder of the match. 
The assumption is that a high-affinity l igand will take advantage of at 
least one of the pocket’s most profitable interactions. One may choose 
to designate a root probe only at polar anchor probes in pockets where 

Figure 14 (a) 

Steps in a linker-bond merge. (a) Translate the tail to align shared bond 
atoms, (b) Rotate the tail about the vector orthogonal to the shared 
bond vectors to orient the tail bond. (c) Completed bond merge. 

Figure 15 

(a) 

(b) 

(cl 

Steps in a linker-atom merge. (a) Translate the tail to align linker atoms 
in head and tail fragments. (b) Rotate the tail about the vector 
orthogonal to the linker-bond vectors to restore the original bond angle 
(measured before the break). (c) Restore hydrogens for methyl carbons. 

polar specificity plays a role in ligand recognition. Several head 
alignments for biotin in the streptavidin pocket are shown in Figure 3. 

Chaining 
Once a set of head fragments has been computed, the remainder of 
the ligand is docked into place, one fragment at a time, using the 
following procedure: 

1. Align the fragment to the site, matching its linker with the linker of 
the existing partial pose. 

2. For linkers close enough (merge distance = 2.6 A), with similar 
enough orientations (merge angle = 57’), merge the newly aligned 
tail fragment to the existing partial pose so that bond angles are 
restored (Figs 14,15). 

3. Sort the partial poses by score and refine the top-scoring merged 
fragments, then discard those that excessively interpenetrate 
the protein. 

4. At each merge point, propagate only the top scores to continue to 
the next merge point (keep tails = 20). 

Figures 4 and 5 illustrate tail alignment and merging. Pose refinement 
alleviates intra-ligand van der Waals clashes resulting from the merge, 
as well as clashes with the protein. The thoroughness of the flexible 
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search is controllable by the number of partial solutions that are 
propagated forward at each level. The intent is that sparse, fast 
searches will still pick out high-affinity ligands, on the assumption that 
they tend to have good partial scores even before the ligand has been 
completely docked. 
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